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Conditions for the existence of isotonic motions in the generalized problem of the dynamics of a rigid 

body with a fixed point are studied in the case when the auxiliary variables are described by polynomial 

solutions of the types considered by Steklov [l], Goryachev (21 and Kowaiewski [3]. Two new cases of 

isotonic solutions are determined. 

THE HOWGRAPH method, which offers a direct kinematic interpretation of the motion of a rigid 
body with a fixed point based on Poinsot’s theorem and Kharlamov’s equations [4], has not 
only produced a new conception of the properties of such motion, but has also revealed the 
existence of whole new classes of motion. One of the most important is the class of isotonic 
motions, in which the moving and fixed hodographs of the angular velocity are symmetric 
about a plane tangent to them. These motions were first studied by Fabbri [5], who established 
their existence in Steklov’s solution [l]. The isotonic property in Steklov’s solution has also 
been derived by using hodographs. Cases of isotonic motions in the classical context of the 
motion of a rigid body were also observed in the treatments of Lagrange [7], Zhukovskii [8], 
Hess-Stretenskii [7] and Grioli [9]. In the generalized problem of the motion of a gyrostat with 
a fiied point, the only isotonic solutions to have been studied are those with a first layer (in 
Kharlamov’s terminology) of corresponding invariant relation [lo], and isotonic precession 
moti0ns.S 

1. STATEMENT OF THE PROBLEM 

Consider the motion of a charged, magnetized gyrostat with a fixed point in a field of 
potential and gyroscopic forces. The potential forces are due to the interaction of the magnets 
with the constant magnetic field, whose direction is represented by a unit vector v, to the 
interaction of the electrical charges with the electric field, and to the Newtonian attraction of 
masses. The centres of the Newton and Coulomb attractive forces lie on an axis through the 
fixed point parallel to Y. The gyroscopic forces are produced by the Lorentz action of the 
magnetic field on the electrical charges moving in space (there are no currents in the gyrostat) 
and the cyclic motions of the rotors in the body-carrier. 

The equations of motion of the problem may be written in vector notation as follows (see, 
e.g. [l]): 

tPrik1. Mot. Mekh. VoL 57. No. 5, pp. 25-34.1993. 
SVERKHOVOD Ye. V., The precessional-isotonic motions of a rigid body with a fixed point. In Investigation of the 
Precessional and Controllable Motions of II Rigid Body, Donetsk, 1992; Preprint No. 08, Donetsk, Inst. Prikl. Mat. 
Mekh., Akad. Nauk Ukrainy, 1992. 
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Ao’=(Ao+A)xo+oxBv+v x(Cv -s) 

v’=vxlo 
(1.1) 

These equations have three first integrals 

Awe-2(s.v)+Cv.v =2E, v.v =l 
(1.2) 

(Ao+A)+v -j$(Bv.v)=k 

where o is the angular velocity of the gyrostat, v is the unit vector pointing along the axis of 
symmetry of the force fields, A is the gyrostatic moment, s is the vector of the generalized 
centre of mass, A is the inertia tensor of the gyrostat relative to the fixed point, and B and C 
are symmetric 3 x 3 matrices; dots over the variables denote relative differentiation. 

A necessary and sufficient condition for the existence of isotonic motions in the generalized 
problem of rigid-body dynamics is that system (1.1) admits of an invariant relation [12] 

w.(v-c)=O (1.3) 

where c is unit vector that remains fixed relative to the body-carrier. 
Suppose that the matrices A, B and C in (1.1) and (1.2) are in diagonal form, o= (p, q, r), 

v = (v,, v,, v,), s = (s, 0, 0), A = (h, 0,O). Then we obtain from (1.1) and (1.2) 

A,p’= (4 - A,)qr + B,v3q - Bzvzr + (C, - Cz)vzv~ 

A,q’= (A3 - A,)rp- hr+ B,vlr - B,v,p - sv3 + (Cl - C,)v,v, (1.4) 

A3r’= (A, - A,)pq + l.q + B,v,p - B,v,q + svz + (Cz - Cl)v,v, 

v;=rv,-qv,, v;=pv3-rv,, v;=qv,-pv, 

A,p2 + A2q2 + A3r2 - 2sv, + C,v: + C2v$ + C3v: = 2E 

v:+v;+v;=1 

2(A,p + h)v, + 24qv, + 2A3rv3 - B,vf - B,vi - B3vi = 2k 

Let us assume that Eqs (1.4) have a solution in the following form 

q2 = Q(p)= tbtpk, r2 = R(p)= 2 c,.p’ 
k=O i=o 

Vl = cp(p) = iUjP4 v2=w(~h v3=Wp) 
j=O 

(1.5) 

where n, m, n,, q, 1 are natural numbers or zero, bk, ci, uj, gi, 4 are certain as yet 
undetermined parameters. In the classical problem of the motion of a rigid body with a fixed 
point, there are three known solutions with this structure ]l-31. Considering the conditions for 
the existence of quadratic invariant relations in the motion of a gyrostat in a gravitational field, 
Kharlamov [4] generalized Steklov’s and Kowalewski’s solutions and showed that Goryachev’s 
solution cannot be generalized. 
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Substitute (1.5) into (1.4) 

P’= W(P))-’ WY) - K( ~NtQtp)Np))~ 

(QWy2 (a))‘= ~~‘(P~~(~~)(P~(P) - cp(p)W(P) - K(P))-’ 

WpF2 (PI)’ = W(P)~(P)(yr(P) - P~(PM\y(P) - aPN-’ 

A, W PI - K( ~1) = cp’(pMC3 - G MPM P) + B3Gp) - B,w(P) f A2 - A3 I 

A~Q’(~)~~(~) - K(P)) = Wt pX(C, - C, )~~P)K(P) - 

-K(~)(B3P$s)+B*cp(p)+(A3 -A,)~--hl 

(1.6) 

(1.7) 

(1.8) 

A,GPN~‘(P) - K(p)) = %“tp)l(C, - C, )rp( P>W PI + 

+~(p)(B,p+s)-B,cp(p)+(A, -A2)p+hl 

‘p* fp) + am* + R(p)K*tp) - I= 0 

Q(p)(C,W2(p)+Az~+R(p)(C3~2(~)+A3)+C,~2(~)- 

--IMP) + A,P* - 2E = 0, Q~P)Y~P)(B~Y~P) - 24) + 

+R(P)KtP)f&KtP) - 2.43 I + W*(P) - 24pcpty) - 2qO)k + 2% = 0 (w 

The prime denotes differentiation with respect to p. Equation (1.6) establishes the dependence 
of p on?. Note that Eqs (1.6) and (1.7) were obtained from the kinematic equations, Eqs (1.8) 
from the dynamical equations, and Eqs (1.9) from the integrals of the equations of motion. 

In our examination of the conditions for the existence of isotonic motions of the gyrostat, we 
shall assume that the vector c in (1.3) points along the axis on which the gyrostat’s centre of 
mass is situated. The class of isotonic motions that possess this property is not empty, since it 
can be shown that, for example, Steklov’s solution [l] has the property. We then derive from 
(1.3), using (1.5) 

~[~(~~) - c; I + Q(~)~(~) + OK = 0 (1.10) 

where c: = fl. 

2. THE CASE y(p)=go, K(P)=& 

A preliminary task is to estimate the maximum degrees of the polynomials in (1.5), that is, 
the numbers n,m, n,, q, L As a first step, the estimate is conveniently derived from the first 
equation of system (1.8). There are several singular cases. Let w@)=gO, K(p) =fo(n, =0, 
m, =O). Then, noting that g,-f, ie0 (otherwise p=const and the gyrostat is rotating 
uniformly), we obtain from the equation 

The first equation of system (1.9) and Eq. (1.10) yield 
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Q(P~(P)[w(P) - K(P)] = pW)[cp(p) - c; I- (p2(p)+ 1 
(2.2) 

Thus, the maximum degrees of the polynomials Q(p) and R(p) do not exceed two 

Q(,,)=h?-~)~+b~~+bo, R(~~)=c,/)~+c,,u+c~ (2.3) 

The condition that (2.1) and (2.3) satisfy Eqs (1.7)-(1.9) gives a system of algebraic 
equations in the parameters, from which we obtain’the following conditions 

bo = 0, co = 0, a, = cl’ 

a, = A, (go -AI )[(c, - C, kofo + B3 fo - B2go + A, - A$’ 

4 = 2aow,’ ul - &I 1-l 9 Cl = 2uoa,f,-‘(g~ - fo 1-l 

bz = UI Vo - a, kho - A, )-I. c2 = al (a, - go )fi,-’ (go - f. 1-l 

go(fos+h)=uo[gofo(C,-C3)+4+goB~l 

f&os+~)=aokoh(C, -C2)+4 +fOBIl 

gofo (C3 - C2 k42h + go (4 - 5) + go&B31 - 

-gohh(c, -c,)(go -h)= 44(go -foXA +g,,B,)-- 

-@3fo - &to + A2 - A3 )Md, + go (A, - A3 I+ gofo B3 I 

sofa (c3 - C2 )[go (A, - A, ) - fo 642 - 24 I+ gofoB I - 

-gohAl(c, -c,)(go -fo)=4(go -fok43+foB,)- 

-@3h -B,go +A2 -A3)M3go -fob42 -A,)+g,,foB21 

(2.4) 

Naming g, and fo as free parameters, we can use the ninth and tenth equations of system 
(2.4) to determine s and h, and the eleventh and twelfth equations to determine the quantities 
C, -C,, C, -C,. The parameters g, and fo must then satisfy the condition 

Ago (83 - B2 I+ 2h 642 -A,)-2go(A, -A,)*0 

Let us consider an example in which the eleventh and twelfth equations of system (2.4) are 
solvable. Let BI = B, = B3 = 0, C, = ~‘4~ (E’ being a parameter). The two equations mentioned 
then yield only one equation 

&2gof:(4 -Az)+h[Az -E2g:(A, -A,))-goA =0 

which can be solved for fO, say, when A1 - 4 > 0. 
Thus, if &.I) = g,,, K(P) = f. the solution (1.5) will be 

P’=(go -fo~Pa;‘~~qP+q~~c2p+c~~l~~ q2 =p(qp+q) 

r2 = p(c,p+c ) I* 1 v =u p+c’ 1 I (2.5) 

~2 =80bW+~,)lyz. v3 =fo[p(c2p+c,)j~ 
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Note that in the classical problem of motion of a heavy gyrostat there is no analogue for the 
solution (2.5) if s z 0. In addition, it follows from the form of the solution that, if n, = 0 and 
m, = 0, the polynomials Q(p) and R(p) cannot be constants, since b0 = 0 and c, = 0. 

The solution (2.5) will be real, for example, if A1 = 2a, A, = lSa, A3 = a, go = 2f,, BI = B, = 
B3 =0, a,=l, where a>O, fo >O. 

3. THE CASE m,=O, n,#O 

The first equation of system (1.8) implies 

AI (Y’(P) - fo) = CP’(P)IWP)[(C~ - C, )fo - 82 I+ Wi + 4 - A3 I (3.1) 

This yields two possible cases 

(C,-C& -B2 =o, “* =1-l 

(C,-C,)fo --B, #O, 1=1 

BY (1.7) 

(Q(PN~(PVW(P) - h I= W(~h’h’)k’fo 

WMi WP) - h I= w’(Pxcp(P) - PWP)) 

cp(P)) 

(3.2) 

(3.3) 

(3.4) 

Consider the case (3.2). Analysing (2.2) and (3.4), one can show that II = 2, MS I+ 1. On the 
basis of (3.1), which takes the form 

V’(P) - fo = PI CP’(P). PI = A;’ (4fo + A2 - 5 1 (3.5) 

Eqs (1.8) may be transformed as follows: 

pL14(2qp+ q)= m~mw, - c3vi + B,i+ 

+(4 - A, - B3h )P - U-OS + xl) 

1+43R’(p) = NC2 - C, hWW + w(P)(~P + s)- Q+‘(P) + (4 - A,)P + A) (3.6) 

Since l> 1, the first equation of system (3.6) yields 

((7 -c3&+4 =o, 9 =P,/lh. 4 =2Ps/l-‘1 

p2 = 4’ (5 - A, - B3fo ), P, = -4’ (fos i A) 
(3.7) 

Since the maximum degree of the polynomial on the left of the second equation in (3.6) is at 
most 1, and for C, + C, the right-hand side of that equation is a polynomial of maximum degree 
21-1, it necessarily follows that C, =C, in (3.6). It then follows from (3.2) and (3.7) that 
B2 = BI. Eliminating the quantity v(p)-& in the second equation of (3.4) by using (3.5), we 
find that 

R(p) = 2(f&J’[(U, - g,_J(l+ l)-’ P~+l+..*+~o’op+ b. I (3.8) 

where A is an arbitrary constant. Using (3.8) and the previously obtained conditions C, = C,, 
B, = B,, we can write down conditions under which (3.5) and the second equation of (3.6) are 
identified in p 
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al = 8r-Iv al_, -gl-2 =P~qg~-~~....az -a =cL4g2 

al-gO =~481+kr % =p4gO+p6 

lcLl = 1, gf_2 = cLI (I - l)a,_, v.-.lgl =w2* 80 -h =wl 

~l4=~t&43+~3fo)-'. CLS=~M,-A~)(A~+~~~)-~ 

k&5 =&(A3+B3fb)-' 

We have taken into account that a, f 0 if 1> 1. Consider Eq. (1.10) 

P(cp(P) - c; I+ (9P2 + hP + 60 ho) + MO) = 0 

By (3.8) and (3.9), this implies that b2 = -1, and then by (3.7) we have 

(3.9) 

(3.10) 

G42 -A,W,f, +A,+4 --A,)=0 (3.11) 

If A2 f: AI in (3.11), then I = -1, which is impossible. We therefore put A, = A1 in (3.11). By 
(3.9) 

aI_1 = lp4gl_l, 81-2 = U - W4&-1 (3.12) 

On the basis of these conditions, we require that the first equation in (3.4) and Eq. (3.10) must 
be identities with respect to p. We then obtain the following constraints on the parameters 

which cannot hold simultaneously if I> 0. This means that in (3.9) and (3.12) g,_, = 0, a, = 0 if 
l> 1. Consequently, case (3.2) cannot occur. 

Consider case (3.3). It follows from (2.2) that n = 0, n, = 1, m = 2. If we require that at these 
parameter values the first equation of (1.9) and the first equation of (3.4) must be identities in 
P, we get 

bog: - alfo + a: = 0, fzf + bog: + f:c2 = 0, a, + bog, + foc2 = 0 

Since b, # 0 (otherwise p = const), it follows from these equalities that g, = 0 or fo = 0. Since 
n, #O it follows from (1.4) that the equality f0 = 0 may be true provided that qv, - pv, = 0, 
which condition we reduce to the form b,cp*(p) - p’R(p)y(p) = 0. But this cannot hold identi- 
cahyinp if n, *O. 

We have thus shown that the case n, # 0, m, = 0 is impossible. 

4.THE CASE I=1 n,#O, m,fO 

We may assume without loss of generality that m, d q. It then follows from the first 
equation of (1.8) that 

c3 =c, (4.1) 

Consider the first equation of (1.9) and Eq. (1.10) 

(sip + ao)2 + Q(P)~‘(P) + %P)K’(P) - 1= 0 
(4.2) 

f-&p + 6% - c; )I + QWWp) + R(pN(p) = 0 
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Analysing these equations, we obtain the following possible cases: if n = 0, n, = 2 : m, s 0; if 
n=l, n,=l: q=l; if n>l: m=n, m,=n,. If n=m=n,=m,=l,it follows from the second 
equation of system (4.2) that b,g, +clf, = -a,. We then derive from (1.7) a system of algebraic 
equations, from which it follows that 3(&g, +c,f,) = -2u,. This means that a, = 0, which is 
impossible. 

We will now study the case when rz = m, n, = q, where n, f 0. Equations (4.2) imply the 
conditions 

(4.3) 

from which it follows that gn, = f.,, b,, +c,, = 0. We now turn to the first equation in system 
(1.8). This equation, by virtue of our assumptions, yields B3 = B2 and 

&_I = fq_I..... 8, =A* go =fo+cLo 

p. =a,& -AjM, +q&)-’ 
(4.4) 

Here we will ignore the case A, = A,, for as B3 = B, (see (4.1)) and Eqs (1.4) are true, it leads 
to the Kirchhoff-Kharmalov solution. 

By (4.3), the first equation of (2.2) becomes 

from which it follows that n = 2. Then also m = 2. If q,(C, -C,) - s # 0, the second and third 
equations of systems (1.8) imply 

u,(C, -C,)-B, =o, “, =l(fq =o if “, >l) 

Wo4 =a,Uibo(C, -Cd-sl+4a,+A3-41 

b,i.+% =2q(fobo(C, -C2)-d+(B,q, -VI 
(4.5) 

wo4 = 2a, Ifob,(Cz - C, I+ sl+ aovo(C, - C, I+ ~0s - B,ao + Xl 

where, by (4.3) and (4.4) it must be true that fi(&+cz)=O. This leads to the equalities b, = 
-qIPo, c, =allPo. 

By (4.2), we have 

f,(c, +4)+2Wo =O. f,(c, +4)+b+o+u, =O 

Taking everything into account, we obtain a, = 0, which is impossible. Hence we must put 
Q,,(C, - C,) - s = 0. Then it is true that A.& + A,c, = 0. 

The second relationship in (4.2) may be written in the form 

p[u,p+(uo -c;)I+(f,p”+...+fo)[(b, +q)p+(bo+co)l+ (4.6) 

+po(b2p2 + b,p + bo) = 0 

If n., = 1, one can use the previously obtained results, i.e. in that case a, = 0. 
If n, # 0, it follows from (4.6) that bl +c, =0, so that A, = AS. Thus, the case I = 1 is 

impossible. 
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S.THE GENERALCASE (I>& nl,itO, q#O) 

By virtue of our assumptions, condition (4.1) follows from the first equation of system (1.8). 
If it is also assumed that n, > 3, it follows from that equation that B, = 0. We then deduce 
from (1.7) and (1.8) that 

A, [W(P) - K(P)] = (P’(P)~&K(B)+ A2 - A31 

~~(Y)~~(P)~==AA,W(P)L~~(~).-~~(~)I~B~K(P)+AZ-A~I-' 
(5.1) 

[R(p)K2(P)I'=2A1K(y)I~(p)-pW(p)l[B3K(P)+Az - Ad-’ 

A,Q’(P)[WP) -+ A2 - 4 I= 2A,I(G -- C,~P(PMP) - 

-~(~)(~~~ + 4 + &P~P) + 6% - A, )Y - Al 

AP’(/J)I&K(P)+ 4 -&I= 24[-(C, - C,)cp(pN(p)+ 

+WY~ - ~CP(P) + IA, - A2 )P + xl 

Since rt, >q, it follows from the first equation of this system that the following cases are 
possible 

(1) B,=O, n,=I-1, (2) Bs+O, nl=m,i-I-l 

Analysis of the other equations of (5.1) produces the following subcases 

(5.2) 

1.1. C, fC*, m+m,-lsl, n+n,-I=!, m-l=I-l+n, 

1.2. Cl=C2, m+m,-lG1, n--l</, m-l=l 
(5.3) 

2.1. C, fCz, m+m, -l=l, n-1=1, m-l=li-n, -ml 

2.2. Cl =C,, m-km, -i=l, n+n,-i=max(l,I-m,)(l-m, *I) 

n + 111 - 1 s I(1 - ml = 1). n + m1 - I= max(m, + l,l)(mi + 1 f I) 

II - I + ml C I(m, + 1= I), m - l+ m, = max(n, ,I)(+ + I) 

m - 1 + nrl 6 1 (n, = I) 

It can be shown that (5.2) and (5.3) cannot be simultaneously true. Thus, we must assume that 
m, =n,. 

By the first equation of system (1.9) 

Al. 2l=n+2n, =m+2mI, 

A3. 21=m+2nt, >n+2n,, 

Similarly, we deduce from (1.10) the following 

Bl. l+l=n+n, =mem,, 

83. I+l=ttt+m, >n+nl, 

A2. 21=n+2nl sm+2m, 
(5.4 

A4. nc2n, =m+2mI >21 

independent possibilities 

B2. I+l=n+n, >m+m, 

(5.5) 
B4. n+n, =m+ml >l+l 

Analysing the compatibility of relations (5.4) and (SS), we obtain the following cases 
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1. n=m=2, m, =n, =1-l 

2. n=m=2(1-n,), ml=ni<I-1 

3. n = 2, m<2, m, =n, =1-l 

4. m=2, n<2, m,=n,=I-1 

5. m = !I = I + 1 - 11*, “I, 11, = > 1 - 1 

6. m=tt>/+l-nl, m=n>2(1-n,) 

Consider the first equation of (1.8) 

A,[&, -f,,W+...+(gc, -h)l= 

(5.6) 

(5.7) 

If we put B3 = B, in (5.7) and remember that I> 1 we get gi -L = 0 for all i = 0, . . . ,n,. But then 
it follows from (1.6) that p=const, i.e. the gyrostat rotates uniformly. We shall therefore 
assume from now on that B3 f B,. From (5.7) we now deduce the condition g,,, f f,, and the 
following bound for the maximal degrees n, L I- 1. 

Let n,=I-l+N,whereNtakesvaluesO,l,..., n-l. Then 

f,B, -g,,B, =O....vf,+,B,-gN+& =0 

fN83 - gNBz # 0 (N * O), foB3 - g& + AZ -A3 + 0 (N = 0) 

(5.8) 

By (5.7) and (5.8) 

~(P)-K(P)=A;‘(kZ,p’-l+...+(l~)(CtN~N+...+a,) 

oN = fN& -go&,..., ae=fiB3-gl&. ao=fo&-goB2+A2-A3 

(5.9) 

Since n, = I- 1+ N, N 3 0, case 2 of (5.6) is impossible. Case 6 is impossible because of (2.2) 
from which it follows that n G 2 if N = 0 and n = 2 -N if N + 0. The second and third equa- 
tions of (1.8) imply 

A2(n~,p”-‘+...+q)[(g, -f,,)p”+...+(go -fo)]= 

=2(lu,p’-‘+...+u,)[(C, -c,)o,f,p'+~+...] 

A,(mc,p”-‘+...+c~)[(g, -fn)ps+...+(go - fo)l= 

= 2(lulp’-‘+...+al)[-(C~ - c*)u,g,p’+~+...] 

(5.10) 

Hence, since I > 1, g,, + f,, , it follows that n = m = 21. The last condition is incompatible with 
cases 1,3,4 and 5 of (5.6). Thus, we put C, = C, = C, in (5.10) and 

Az(n~~p”-‘+...+q)[(g~ -f,)p”+...+(go - fo)l= 

=2(la,p’-‘+...+a,)[-(B,p+s)(f,p’+...+fo)+ 

+B,(u,p’+...+u,)+(A, -A,)p-h] 
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(5.11) 

= 2(h,p’-‘+...+Q,)[-(&p+ S)(&,,p’+...+80)- 

-B&z,p’+...+a,,)+(A, -.A,)p+k] 

Let N #O, i.e. n, > Z-l. Then, since B, ;tO, it follows from (5.11) that n = 1+1, m = I+ 1. 
Hence case 5 of (5.6) is impossible. 

We thus have only one remaining case in (5.6) n, = I- 1, m =G 2, n > 2. And since C, = C, = 
C,, the matrix C does not occur in the equation. 

Examination of the energy integral in (1.9) gives I= 2. Consequently, in the general case a 
solution of Eqs (1.7) and (1.8) can only in the case when n = m = 2, n, = m., = 1, I = 2. Substitut- 
ing these values into (1.5), we require that Eqs (1.7) and (1.8) must be identities in p. This gives 
the solution 

4* = %8i’ (8t - fi )-‘[(fi - a* )P* - 11 

r* = a*$(& - fi )-‘L(tZ* - g,)p* + 11, V1 = u2p2 + 1 

v2 = 81P4* v3 =.@. ~‘=(8t -fi)(2~2)-1~ 

which exists under the following conditions 

C3=C2=Ct, u~=A~~I(~A~-AI), L=Bl 

fi = &(A, -2A3)(A1 -2A,)-‘, B, = 2nA,(2A2 -A,)-’ 

83 “2ut(2A3 744)-‘. $=(A, -A,)(A, -A3)g;1(A, -2A,)-’ 

and generalizes Steklov’s solution [l] to the motion of a gyrostat in a Lorentz field. 

(5.12) 
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